# Chapter 6 – Transformations

# Name: Key

### **Transformations Test Review**

Choose what kind of transformation is represented by the following transformational rules.

1.  $(x, y) \rightarrow (-y, x)$ 

Rotation – Translation – Reflection

2.  $(x, y) \rightarrow (x, y - 4)$ 

Rotation + Translation - Reflection

3.  $(x, y) \rightarrow (y, -x)$ 

Rotation - Translation - Reflection

4.  $(x, y) \rightarrow (-x, y)$ 

Rotation - Translation - Reflection

5.  $(x, y) \rightarrow (y, x)$ 

Rotation - Translation Reflection

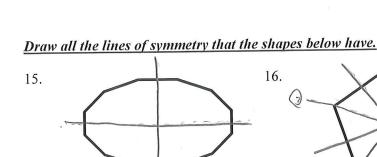
6.  $(x, y) \rightarrow (-x, -y)$ 

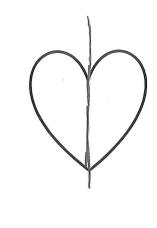
Rotation - Translation - Reflection

<u>Use the following info for Questions 7 & 8.</u>  $\Delta DAB$  is reflected over the y-axis to create  $\Delta D'A'B'$ . Points A & B are not on the y-axis.

- 7. What relationship must exist between the lines that connect A to A' and B to B'? (Hint: Draw a picture.)
  - [A] They are parallel
  - [B] They are perpendicular
  - [C] They are congruent
  - [D] They are not related
- 8. What relationship must exist between the y axis and the line connecting B and B'? (Hint: Draw a picture.)
  - [A] They are parallel
  - [B] They are perpendicular
  - [C] They are congruent
  - [D] They are not related

Read each statement carefully and then decide if the statement is ALWAYS/SOMETIMES/NEVER true.

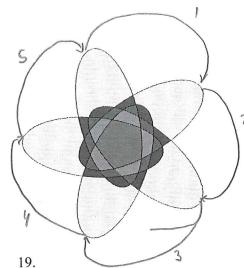

- 9. Rotations preserve congruence (the shape stays the same size).
- ALWAYS SOMETIMES NEVER

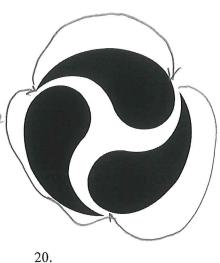

10. A reflection can map a point onto itself.

ALWAYS - SOMETIMES - NEVER

11. A rotation can map an entire shape onto itself.

- ALWAYS SOMETIMES NEVER
- 12. If you translated an ARROW, it will be pointed in the same direction.
- ALWAYS SOMETIMES NEVER
- 13. A reflection and a rotation can result in the same mapping.
- ALWAYS SOMETIMES NEVER
- 14. The magnitude of a rotational symmetry is less than the order.
- ALWAYS SOMETIMES NEVER




17.

Which of the following shapes have rotational symmetry? If the shape does, state the order and magnitude of the rotational symmetry.







18. Rotational Symmetry: Yes (No) Order:

Magnitude: 360

Rotational Symmetry: (Yes)/ No

Order: 5Magnitude:  $360 = 72^{\circ}$ 

Rotational Symmetry: (Yes) No

Match the pre-image coordinate to its corresponding image coordinate after each transformation. [A] (2,5)

| 21. | V(5, -2) is the pre-image.<br>$(x, y) \rightarrow (-y, x)$ , what are the coordinates of V'? $(2, 5)$               | [B] | (-2, 5)  |
|-----|---------------------------------------------------------------------------------------------------------------------|-----|----------|
| 22. | W' (-2, 5) is the pre-image. $(5, -2)$ $\bigcirc$ $(x, y) \rightarrow (x+7, y-7)$ , what are the coordinates of W'? | [C] | (2, -5)  |
|     |                                                                                                                     | [D] | (-2, -5) |
| 23. | $X'(2, 5)$ is the pre-image. $(-2, 5)$ $(x, y) \rightarrow (-x, y)$ , what are the coordinates of $X'$ ?            | [E] | (5, 2)   |
| 24. | Y' (-2, -5) is the pre-image. $(-5, -2)$ $(x, y) \rightarrow (y, x)$ , what are the coordinates of Y'?              | [F] | (-5, 2)  |
|     |                                                                                                                     | 101 | (5 -2)   |

25. 
$$Z'(5, -2)$$
 is the pre-image.  $(-5, 2)$   $(x, y) \rightarrow (-x, -y)$ , what are the coordinates of  $Z'$ ?

## For each transformation below, write the rule, list the new coordinates and draw the pre-image and the image on the graph.

Rotate 90° counterclockwise 26.

$$C(3,-3)$$

Rule: 
$$(x,y) \rightarrow (\underline{\mathcal{G}},\underline{\mathcal{X}})$$

$$A'(\underline{4},\underline{-2})$$
  $B'(\underline{-2},\underline{-1})$   $C'(\underline{3},\underline{3})$ 

$$B'(-2,-1)$$

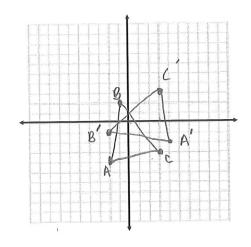


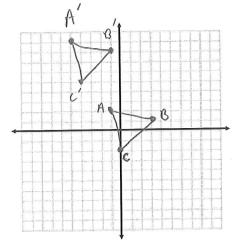
$$C(0,-2)$$

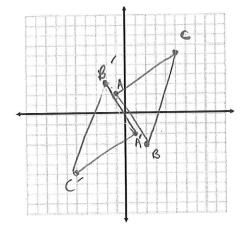
Rule: 
$$(x, y) \rightarrow (\chi - \frac{y}{2}, \frac{y+7}{2})$$

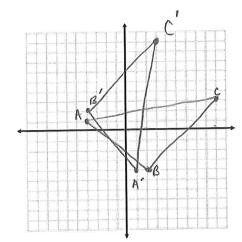
$$A'(-5,9)$$
  $B'(-1,8)$   $C'(-4,5)$ 

#### Rotate 180° 28.


Rule: 
$$(x, y) \rightarrow (-\frac{x}{2}, \frac{y}{2})$$

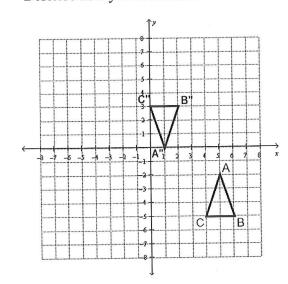

$$A'(1,-2)$$
  $B'(-2,3)$   $C'(-5,-6)$ 


#### Reflect over the line y = x. 29.


Rule: 
$$(x,y) \rightarrow (\underline{\mathcal{Y}},\underline{\mathcal{X}})$$

$$A'(\underline{1},\underline{-4})$$
  $B'(\underline{-4},\underline{2})$   $C'(\underline{3},\underline{9})$ 



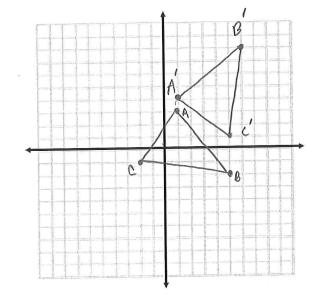






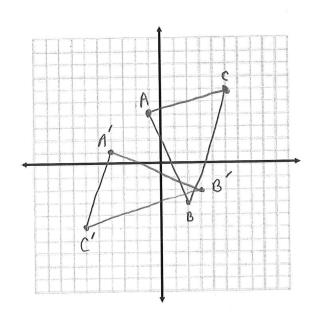

Triangle ABC and triangle A"B"C" are plotted on the coordinate plane below. 30.

Describe how you could move the  $\triangle ABC$  to exactly match  $\triangle A"B"C"$  using a series of two transformations.




- 1) Reflect over X-axis
  2) Translate 2 down and 4 Left.

## For each transformation below, draw the pre-image, list the new coordinates and draw the image on the graph.

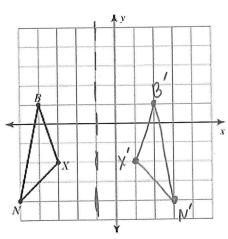

Translate right 3 and down 4, then rotate 90° 31.

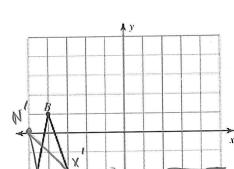
A (1,3) B (5,-2) C (-2,-1) After both 
$$\Rightarrow$$
 A'(1, 4) B'(6,8) C'(5,1)

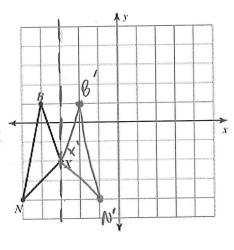


32.

$$\begin{array}{cccc}
A & (-1,4) & B & (2,-3) & C & (5,6) \\
 & & (4,1) & (-3,-2) & (6,-5) \\
 & \Rightarrow A' & (-4,1) & B' & (3,-2) & C' & (-6,-5)
\end{array}$$

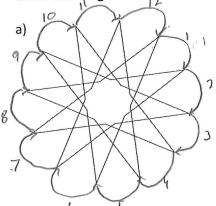




33. Reflect the figure below over each of the following lines.


$$x = -1$$

$$x = -1$$
 b)  $y = -2$ 

c) 
$$x = -3$$








34. Determine if each of the following figures have rotational symmetry. If they do, then determine the figure's

order and magnitude.



b)

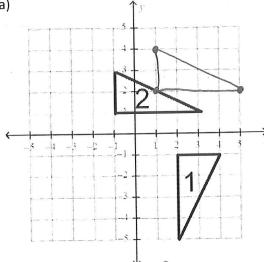




Rotational Symmetry? (Yes) No

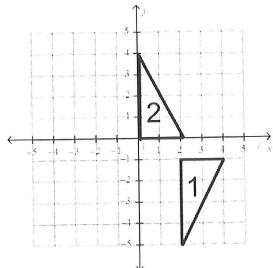
Rotational Symmetry? Yes No

Order: 12


$$\frac{360}{12} = 30$$
Magnitude: 12

Order:\_\_\_\_\_

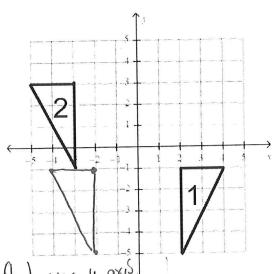
Magnitude: 
$$\frac{360}{4} = 90$$
 Magnitude:  $\frac{360}{4} = 90$ 


Write a description using a combination of transformations as to how you can transform the pre-image, triangle 1, to match up with the image, triangle 2.

a)

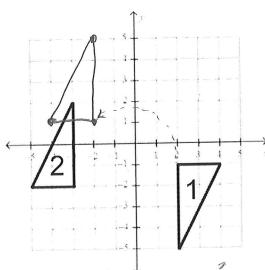


Q Rotate 90°


3 Translate 2 left and 1 2000



@ Reflect our X-axis.


2) Translate 2 Left and I down.

O Translate 2 left and Tup. O Reflect over X-axis



O Redlect over y-axist 2 Translate I right and 4 up.

Breflect our y-axis.



@ Rotate 180

2) Translate 1 Left and 3 down.