Geometry 3313

1. Find the area of each of the regular polygons below.
a.

$$
P=12(9)=108
$$

$$
\begin{aligned}
& A=\frac{1}{2}(108)(16.5) \\
& A=891 \mathrm{u}^{2}
\end{aligned}
$$

b.

$$
P=10(6)=60
$$

$A=\frac{1}{2}(60)(5 \sqrt{3})$
$A=150 \sqrt{3} u^{2}$ or $259.8 u^{\circ}$
2. The apothem of the square below is 6 inches. Because the right angle of the square is bisected by the line, this creates a 45-45-90 triangle.

a. Use the 45-45-90 triangle pattern to find the length of the bottom side of the triangle. Then find the side length of the square.

b. Use the formula for a square to find the area of the square.

$$
\begin{aligned}
& A=12^{2} \\
& A=144 \mathrm{in}^{2}
\end{aligned}
$$

c. Use the regular polygon formula to find the area of the square.

$$
\begin{array}{ll}
P=12(4) & A=\frac{1}{2}(48)(6) \\
P=48 & A=144 \text { in }^{2}
\end{array}
$$

3. Suppose the area of a regular pentagon is $130.8 \mathrm{~cm}^{2}$ and the apothem is 6 cm . Find the side length of the pentagon.

$$
\begin{aligned}
130.8 & =\frac{1}{2} P(6) \quad 43.6 \\
130.8 & =3 P \\
43.6 & =P
\end{aligned}
$$

4. Suppose we have the regular pentagon below.

a. Use the interior angle of a regular polygon formula, Each Interior Angle $=\frac{(n-2) 180^{\circ}}{n}$, to find the measure of each interior angle of the regular pentagon.

$$
\frac{(5-2) 180}{5}=108
$$

b. Draw in the apothem of the regular pentagon to form a triangle. What are the angle measurements of the triangle?

$$
36^{\circ}-54^{\circ}-90^{4}
$$

c. Use SOHCAHTOA to find the length of the apothem.

$$
\sin 54=\frac{a}{4}
$$

$$
4 \sin 54=a \rightarrow a=3.2
$$

d. Use SOHCAHTOA to find the side length.

$$
\begin{aligned}
\cos 54 & =\frac{x}{4} \\
4 \cos 54 & =x \rightarrow 2.4 \quad \begin{aligned}
\text { side } & =2(2.4) \\
& =4.8
\end{aligned}
\end{aligned}
$$

e. Find the area of the regular pentagon above.

$$
\begin{array}{ll}
P=5(4.8) & A=\frac{1}{2}(24)(3.2) \\
P=24 & A=38.4 u^{2}
\end{array}
$$

