Warm-Up

Find the area of the rectangle below.

Learning Targets

- a) I can apply the area formula(s) of Triangles to solve problems.
- b) I can apply the area formula(s) of Rhombi to solve problems.

Area of a Triangle

The **HEIGHT** of a triangle is the perpendicular segment from a vertex to the line containing the opposite side.

The opposite side is called the **BASE** of the triangle.

The terms **HEIGHT** and **BASE** are also used to represent the segment lengths.

1. Find the area of the triangle.

2. Find the area of the triangle

Area of Triangle =
$$\frac{1}{2}bh \ or \frac{bh}{2}$$

3. Area of $\triangle = 63 \text{ cm}^2$

Area of \triangle = 80 m²

A=jbh 80= \frac{7}{7} \cdot p \cdot 16 80=86

Rhombus

a) Find the area of the rhombus below if the diagonals are 19 in and 14 in (use two triangles).

All sides are congruent by definition.

Atriangle = 1.5.7 = 17.5 in2 4 + riangles ->17.5 ×4=70in1

above

b) Now, find the area of the rhombus below if the diagonals are d₁ and d₂.

Equale = 2 . 29 . 29 = 49 . 97 4 + riangles -> 4. \dd d, d, = \frac{1}{2}d, d,

Area of a Rhombus: $A = \frac{1}{2} \cdot d_1 \cdot d_2$ or $A = \frac{d_1 \cdot d_2}{2}$

d, and d, are diagonals

Find the area of each rhombus.

5.

6.

$$A = \frac{1}{3} \cdot 16.30 \quad x = 15$$
 $A = \frac{1}{3} \cdot 16.30 \quad x = 15$

8. The rhombus below has ar area of 96 in². Find the perimeter of the rhombus

$$d_1 = 16$$
 Perimeter = $4.10 = 40$ in
 $d_2 = ? 12$
 $A = \frac{1}{3}d_1d_2$
 $96 = \frac{1}{3}\cdot 16\cdot d_2$
 $96 = 8d_2$
 $12 = d_3$

Method 1

Area of 4 triangles

$$A = \frac{1}{3} \cdot 6 \cdot 6 = 18$$

Total Area = 4.18

 $= 72 cm^{2}$

Method 2 Area of outside - Area of inside

A outside =
$$12.12 = 144$$

Ainside = $\frac{1}{2}.12.12 = 72$
Shaded Arca = $144-72$
= $72cm^2$

Assignment

8.1 Areas of Special Quadrilaterals Homework Day 2

April 04, 2017