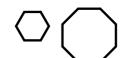
### WARM UP

get new weekly warm-up sheet get out "Add it up" worksheet


Discuss with your neighbor the meaning of the following terms:

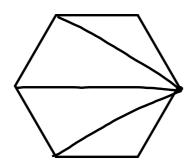
5. regular polygon sides +angles =



- 1. convex polygon
- 2. concave polygon
- 3. equilateral sides ≅
- 4. equiangular angles =

write thoughts on MONDAY of warm-up sheet




#### **Learning Targets:**

- 5.1 Polygon Sum Conjecture
  - A. I can apply the polygon sum conjecture
  - B. I can find the measure an interior angle of a regular polygon
- 5.2 Exterior Angles of a Polygon
  - A. I can apply the exterior angle sum conjecture
  - B. I can find the measure of an exterior angle of a regular polygon

| Polygon                   | Sides         | # of Triangles | Sum of Interior Angles |
|---------------------------|---------------|----------------|------------------------|
| Triangle                  | 3             | 1              | 180°                   |
| Quadrilateral             | 4             | 2              | 360°                   |
| Pentagon                  | 5             | 3              | 540° 190.3             |
| Hexagon                   | 6             | Ţ              | 720° 140.4             |
| Heptagon                  | 7             | 5              | 900° 180.5             |
| Octagon                   | 8             | 6              | 1080 180.6             |
| Polygon with n # of sides | $\rightarrow$ | n-2            | 140 (n-2)              |

http://illuminations.nctm.org/ActivityDetail.aspx?ID=9





# Section 5.1 Polygon Sum Conjecture

Recall: <u>Polygons</u> are closed figures whose sides are all segments.

Each segment has an endpoint called a vertex (plural - vertices).

**Diagonal**: A segment that connects any two nonconsecutive vertices.

#### **Interior Angle Sum Theorem**

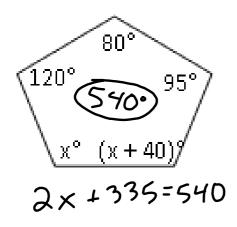
The sum of the measures of the interior angles of a convex polygon with n sides is

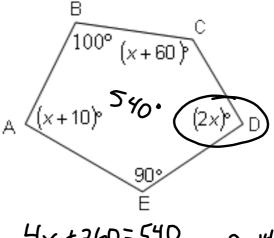
$$180(n - 2)$$

EX 1 Find the sum of the interior angles of a(n):

- a) decayon  $180(10-2) = 180.8 = 1440^{\circ}$
- b) pentadecagon (15 sides) = 180.13 = 2340°
- c) 22-gon 180 20=3600°

EX 2 The sum of interior angles of a n-gon is 1800. Solve for n. What would be the measure of one angle if this polygon was regular?


$$\frac{180(n-2)}{180} = 1800 \qquad \frac{50m}{n}$$


$$180 = 10 \qquad \frac{1800}{12} = 150^{\circ}$$

$$1 = 10 \qquad \frac{12}{12} = 150^{\circ}$$

#### EX 3 Solve for x.

#### EX 4 Find the measure of $\angle D$ .





$$4x + 260 = 540$$
 mLD=140°  $4x = 280$  x=70

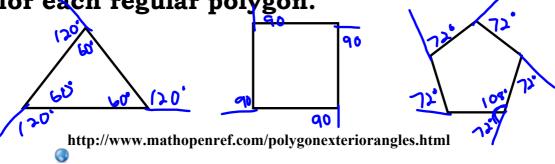
EX 5 Find the measure of an interior angle of a regular heptagon.

$$\frac{180(n-2)}{n} = \frac{180.5}{7} = \frac{900}{7} = 128.6$$

EX 6 The measure of an interior angle of a regular polygon is 108. Find the number of sides in the polygon.

$$\frac{180(n-2)}{n} = 108$$

$$180(n-2) = 108$$


$$180(n-3) = 108$$

$$72n = 360$$

$$0 = 5$$

## **Exterior angles**

Find the sum of the exterior angles for each regular polygon.

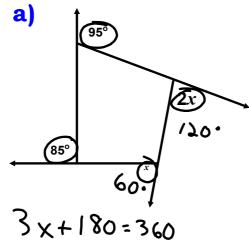


What do you notice about an interior and exterior angle of any polygon?

**Exterior Angle Sum Theorem** 

## Sum of Exterior Angles = 360°

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360 °.


EX 7 Find the measure of each exterior

angle of a regular pentagon.

Exterior 
$$L \text{ sum} = 360$$

$$\frac{360}{5} = 72^{\circ}$$

EX 8 Find each exterior angle of a regular nonagon.  $\frac{360}{9} = 40^{\circ}$ 



$$\frac{3}{2} \times = 180$$



## Practice: Angles in Polygons Worksheet

WARM- UP/ NOTES Angles of Polygons

- 1. The SUM of the interior angles of a convex polygon is:  $5 = \frac{(n-2) \cdot 180}{}$
- 2. Find the sum of the interior angles in a convex nonagon.

- 3. Each interior angle of a regular convex polygon is:  $A = \frac{(n-2)\cdot 180}{n}$
- 4. Find each interior angle of a regular dodecagon.

$$\frac{13}{(19-9)\cdot 180} = \frac{19}{10(180)} = \frac{1800}{12} = 150^{\circ}$$

5. The measure of an interior angle of a regular polygon is 160 degrees, How many sides does the polygon have?

$$160 = \frac{(n-3)\cdot180}{0} \to 160n = (n-3)\cdot180 \to 160n = 180n - 360 \to 10 = 180$$

6. The sum of the measures of the exterior angles of a convex polygon is \_360.

7> Find the sum of the measures of the exterior angles of a convex heptagon.

8. Find the number of degrees of each exterior angle of a regular pentagon.

9. Find the measure of an exterior and an interior angle of a regular hexagon.

$$E = \frac{360}{6} = 60^{\circ}$$
  $I = \frac{(6-9) \cdot 180}{6} = 120^{\circ}$ 

10. Find each angle in quadrilateral BEST: (2x+20) (3x 2x+(2x+20)+(3x-10)+(2x-10)=300

$$(2x+20) + (3x-10) + (2x-10) = 300$$

$$9x = 360$$

$$8$$
(2x - 10)

ZE=100° Generated by CamScanner