Warm-Up

Distance in Coordinate Geometry

What is the shortest distance from Kayleigh to Isabella? Describe how you would identify and find the value of this distance.

Coordinate Geometry 9: Distance in Coordinate

ing

10.1b Distance in Coordinate Geometry

- a. I can calculate the distance between two points using the distance formula or the Pythagorean Theorem.
- b. I can find the perimeter of a polygon on the coordinate plane.

Discovering Geometry ©2015 Kendall Hunt Pul e in Coordinate Geometr

10.1b The Distance Formula

2.

Find the distance between the points. Give an exact answer (*hint: use Pythagorean Thm.).

How about when two points are too far? It is unrealistic to plot them.

- 3. Given the points (15, 34) and (42, 70)
 - a. Find the horizontal distance between these points.

b. Find the vertical distance between these points. 70-34-36

C. Use Pythagorean Thm. to find the distance between point A and B.

$$27^{2}+36^{2}=c^{2}$$
 $729+1296=c^{2}$
 $2025=c^{2}$
 $\sqrt{2025}=c$
 $45=c$

Exploring the distance formula.

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the distance between A and B is:

a. Write an expression to represent the horizontal distance between the two points.

$$\times_2 - \times_1$$

b. Write an expression to represent the vertical distance between the two points.

C. Use your expressions from **a**, **b**, and plug into the Pythagorean Thm.

$$(AB)^{2} = \left(\begin{array}{ccc} \times_{2} & \times_{1} \end{array} \right)^{2} + \left(\begin{array}{ccc} \times_{2} & \times_{1} \end{array} \right)^{2}$$

d. Solve for AB.

The Distance formula:

5. (-4, 6) and (8, -1)

Examples: Find the distance between the following sets of points. Give an exact answer 22+82=62 (no decimals).

4.
$$(5,0)$$
 and $(3,8)$

$$d = \sqrt{2^2 + 8^2}$$

$$d = \sqrt{4 + 64}$$

$$d = \sqrt{68}$$

$$\sqrt{334}$$

$$\sqrt{34}$$

$$d = \sqrt{12^{2} + (-7)^{2}}$$

$$8 - (-4) - 1 - 6$$

$$d = \sqrt{144 + 49}$$

6. Use the distance formula to determine the most specific name for the following quadrilateral.

$$A(-4,0), B(-7,-1), C(-8,2), D(-4,5)$$

